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The algorithm and computer program are completed to simulate the quenching of complex cylinders,
cones, spheres, etc. Numerical simulation of steel quenching is a complex problem, dealing with estimation
of microstructure and hardness distribution, and also dealing with evaluation of residual stresses and
distortions after quenching. The nonlinear finite volume method has been used in numerical simulation. By
the established computer program, mechanical properties and residual stresses and strains distributions in
the quenched specimen can be given at every moment of quenching.
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1. Introduction

Steel quenching can be defined as “cooling of steel work-
pieces at a rate faster than still air.”[1] Although very simple on
first sight, quenching is physically one of the most complex
processes in engineering and very difficult to understand.
Quenching used to be called the black hole of heat treatment
processes.[2]

Computer simulation of quenching includes several differ-
ent analyses: (1) heat transfer analysis for computation of cool-
ing curves, (2) material properties analysis for computation of
microstructure composition and mechanical properties, (3)
thermoplastic analysis for computation of stresses and strains,
and (4) fracture mechanics analysis for computation of damage
tolerance.[1]

Generally, in simulation of steel quenching, two essential
problems have to be solved. The first problem is to develop a
mathematical model of cooling and prediction of the mechani-
cal properties, stresses and strains. The second problem is to
establish the proper method for real heat data evaluation.

Simulation of any one process can be made successfully
only if all mechanisms of the process are well known and if the
appropriate mathematical methods are used. For steel quench-
ing, it means that the essential characteristics of the phase
transformation and mechanisms of stress and strain generation
during the quenching should be known. In steel quenching
stress-strain analysis, both strains due to thermal strain and
strains due to phase changes have to be taken into account.[1]

Physical and mechanical materials properties, as functions of
structure and temperature, should be known in each moment
during the quenching. From these reasons it is understandable
that computer simulation of steel quenching is of interest to
engineers from a wide range of disciplines, i.e., material sci-
ence, thermodynamics, mechanics, manufacturing, mathemat-
ics, chemistry, etc.

Detailed theoretical and quantitative analysis of the process

that can be applied to a wide range of different types of quench-
ing remains unavailable. Although many attempts have been
made to develop theoretical models to describe steel quench-
ing, all the earlier work relied on simplifications that rendered
the analysis unrealistic. In particular, successful description of
steel quenching is not possible without a good theoretical ex-
planation of all physical processes involved in the mathemati-
cal model. Second, the real complexities of plasticity have to be
introduced into the model, but it is known that the theory of
plasticity is not sufficiently developed. Moreover, change of
physical and mechanical properties by temperature change
have to be involved in the mathematical model.

In the past three decades the Finite Element Method (FEM)
has enjoyed an undivided popularity as the method for solid
body stress analysis. On the other hand, the Finite Volume
Method (FVM) has been established as a very efficient way of
solving heat transfer problems. Recently, FVM was used as a
simple and effective tool for the solution of a large range of
problems in the thermoplastic analysis.[3]

2. Temperature Field Change

Temperature field change in an isotropic rigid body with
heat conductivity �, density �, and specific heat capacity c, can
be described by Fourier’s law of heat conduction:

��c�T�

�t
= div�gradT (Eq 1)

The heat sources that can exist during steel quenching are
neglected in Eq 1. Axially symmetrical bodies, such as com-
plex cylinders, cones, and spheres, can be described as 2-D
problems in cylindrical coordinates r, z, and � � 1.

To solve Eq 1, the finite volume scheme is used. The time
domain is divided into a number of discrete time steps, �t,
whereas the space domain is divided into a number of rectan-
gular cells. Each cell is bounded by four faces with areas Si(j,j+n)

and S(i,i+n)j, (i � 1,2 . . . imax; j � 1,2 . . . jmax; n � ±1), and it
contains one computational nodal point at its center (Fig. 1).
Linear distribution of the temperature T between neighboring
points is assumed. The discretization equation system was es-
tablished by integrating the differential Eq 1 over each control
volume, taking into account initial and boundary conditions.
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The discretization equation of cooling is equal[4]:
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i = 1,2 . . . imax; j = 1,2 . . . jmax n = 3 − 2 m (Eq 2)

where: bij � Qij�t−1, variable Qij is heat extracted during the
time step �t; b(i,i+n)j � W(i,i+n)j

−1 and bi(j,j+n) � Wi(j,j+n)
−1,

variable W(i,i+n)j is the thermal resistance between ij and i+n,j
volume, and variable Wi(j,j+n) is the thermal resistance between
ij and i,j+n volume (n � ±1).

The discretization system in Eq 2 has N linear algebraic
equations with N unknown temperatures of control volumes,
where N is number of control volumes. Time of cooling from
Ta to specific temperature in particular points is determined as
the sum of time steps �t and the cooling curve in each grid
point of a specimen can be calculated.

Physical properties c, �, �, and � have to be known. Tem-
perature dependencies of a heat transfer coefficient and heat
conductivity coefficient can be calibrated on the basis of
Crafts-Lamont diagrams.[4] Calibrated values of heat transfer
coefficient � versus temperature are presented in Fig. 2. For
orientation, the quenchants are classified by a Grossmann’s
severity of cooling, i.e., H-value.

3. Stresses and Strains

The equilibrium relations in tensor notation are:

�ij,i = −Fi

�ij = �ji

(Eq 3)

Body forces equal zero during the quenching. Components
undergoing the heat treatment are not restrained at the surfaces.

The equilibrium and compatibility equations in thermo-
plastic analysis are independent of the plasticity relations.
Prnadtl-Reuss plastic flow rule and Von-Mises principle hard-
ening condition were accepted to established constitutive equa-
tion of the elastic-plastic model. In the elastic-plastic analysis
the strain of transformation plasticity has been taken into ac-
count.

If it is assumed that the total strain is the sum of the elastic
and plastic strains, then relationships between stress and strain
are expressed by a total of six equations:

�ij =
1

2G
�ij − 	ij�


E
� − �T − �st� + �ij

pl (Eq 4)

where G � E/2(1 + 
); � � �ii; E � modulus of elasticity;

 � Poisson’s ratio; and � � linear coefficient of thermal
expansion. Plastic strain increments could be equal:

d�ij
pl =
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2

Sij

�e
d�pl

�e =�3

2
Sij Sij, d�pl =�3

2
d�ij

pl d�ij
pl

(Eq 5)

where Sij � deviator stress tensor; �e � equivalent modified
stress; and �pl � equivalent modified total strain. �e and �pl

could be estimated from the true-stress–true-strain curve. The
six strain components are related to the displacements by:

�jk =
1

2
�uk,j + uj,k − ui,j ui,k� (Eq 6)

Fig. 1 Control volume for 2-D situations
Fig. 2 Calibrated values of heat transfer coefficient � vs temperature
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To carry out such calculations it is necessary to possess a set
of relationships between temperature and position at various
times during the cooling process, as well as the relationships
between temperature and material properties. Thus, in general
there are 15 unknowns, but there are in turn 15 equations that
relate to these unknowns in the 3-D coordinate system.

The discretization system can be established by using the
finite control volume formulation. The discretized equilibrium
equation of finite control volume can be established by ex-
pressing the stresses from displacements, and finally, integrat-
ing the differential equation over the control volume (Fig. 1).[3]

A system of 2N linear algebraic equations with 2N un-
known displacements can be formed, where N is number of
control volumes. For example, the discretized equilibrium
equation in r direction for a 2-D situation is equal:

ui,j��
m=1

2

b�i,i+n�j + �
m=1

2

bi� j,j+n��
= �

m=1

2

�b�i,i+n�j u�i,i+n�j + bi� j,j+n�ui� j,j+n�� + bi,j (Eq 7)

i = 1,2 . . . imax; j = 1,2 . . . jmax n = 3 − 2 m

The coefficients b(i,i+n)j, bi(j,j+n), n � ±1 and bi,j are equal:
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where S(i,i+n)j, Si(j,j+n), n � ±1 are characteristic volume sur-
faces; �r(i,i+n)j and �zi(j,j+n) are characteristic finite volume di-
mensions; u and w are displacements in r and z direction; � and
G are Lame’s coefficients.

4. Phase Transformations and Mechanical Properties

The structural transformations and mechanical properties
were estimated on the basis of time, relevant for structure trans-
formation. The characteristic cooling time, relevant for struc-
ture transformation in most structural steels, is the time of
cooling from 800 to 500 °C (time t8/5).[5] The hardness at grid

points is estimated by the conversion of cooling time t8/5 results
to hardness by using the relation between cooling time and
distance from the quenched end of the Jominy specimen shown
in Fig. 3.

By involving the time t8/5 in the mathematical model of steel
hardening, the Jominy-test result could be involved in the
model. Jominy values can be experimentally evaluated or cal-
culated from elemental composition. Because all the alloying
elements have a cumulative effect on hardenability, it is essen-
tial that all elements, including residuals, be taken into account.
Hardenability depends also on the degree of solution of the
carbides, and it cannot be accurately predicted from only el-
emental composition. The grain size at the austenitizing tem-
perature must be known for calculation of Jominy values.

Structure composition and mechanical properties were pre-
dicted on the basis of calculated hardness in grid points. Char-
acteristic temperatures of microstructure transformation were
predicted by the inversion from the predicted structure com-
position. The critical temperature of austenite decomposition
could be estimated by empirical formulas.[1,6]

A phase fraction can be estimated by taking into account
that steel hardness is equal:

HV = ��% ferrite� HV�F� + �% pearlite� HV�P�

+ �% bainite� HV�B� + �% martensite� HV�M�

+ �% austenite� HV�A���100 (Eq 10)

and the amount of all phases is equal unity:

�% ferrite + % pearlite + % bainite + % martensite
+ % austenite��100 = 1 (Eq 11)

When the additive rule holds for the progress of transfor-
mation, and approximating continues cooling by steps in ac-
cordance with Cahn,[7] a fraction of the transformed austenite
in the pearlite during the time step �t is equal:

�Xi ≈ 4��

3�
1

4
�Ii−1Si−1�

1

4 G
i−1

3

4 �ln
1

1 − Xi−1
�

3

4
�1 − Xi−1��ti

(Eq 12)

Fig. 3 Cooling time from 800 °C to 500 °C vs distance from the
quenched end of Jominy specimen
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Similarly, for bainite transformation:

�Xi ≈ 2Si−1Gi−1(1 − Xi−1)�ti (Eq 13)

where X � is the fraction of transformed austenite, I � nucle-
ation rate, S � nucleation site area per unit volume, and G �
growth rate.

Values I, G, and S mainly depended on microstructure and
temperature.

Equations 12 and 13 could be written as:

�Xi ≈ Kp fpl�T, D� fp2�kpl, A1, �Tpot��ln
1

1 − Xi−1
�

3

4
�1 − Xi−1��ti

(Eq 14)

where Kp and kp1 are the coefficients, D is the diffusion coef-
ficient, and �Tpot is austenite undercooling. For austenite trans-
formation in bainite the quantity of transformed austenite is
equal:

�Xi ≈ Kbfb1(T,D)fb2(kb1Bs�Tpot)(1 − Xi−1)�ti (Eq 15)

Phase hardness is dependent on the chemical composition
and cooling rate. For the Jominy test, it could be written that
phase hardness depends on chemical composition (KS) and
culling rate parameter (CRP).

HV� � f1(KS,CRP) (Eq 16)

Phase fraction is equal:

%� � f2(KS,CRP,TA) (Eq 17)

where TA is the austenitizing temperature. In a task of simula-
tion of the quenching of concrete steel, coefficients Kp, Kb, kp1,
and kb1 are calibrated by using the Jominy test results of con-
crete steel. For this purpose, the cooling curves of the Jominy
specimen have to be known (Fig. 4).

Mechanical properties of steel during quenching directly
depend on the degree of quenched steel hardening and tem-
perature[8]. Mechanical properties Re, KIc, v, E, hardening co-
efficient, and exponent could be estimated from HV.[8]

Mechanical property = f (HV Hardness, Microstructure
composition, Temperature) (Eq 18)

5. Application

The mathematical model has been used for simulation of
mechanical properties and residual stresses in quenched work-
pieces with complex form (Fig. 5). The investigation was done
with the steel 530 A 36 (BS), having the elemental composition
in wt.% of 0.39% C, 0.26% Si, 0.67% Mn, 1.06% Cr, 0.013%
P, and 0.026% S.

Heat treatment for quenching of steel 530 A 36 was heating
on 830 °C for 30 min and oil quenching. The specimen was
quenched in agitated oil with the severity of quenching, i.e.,
Grossmann’s H value equal to 0.45. Calibrated values of heat
transfer coefficients for oil with an H value equal to 0.45 were

used in mathematical modeling (Fig. 2). Experimentally evalu-
ated Jominy results of investigated steel are shown in Table 1.

Figure 6 shows computed and experimentally estimated re-
sults of HRC hardness of the hardened specimen. The values of
experimentally estimated hardness are converted from HV

Fig. 4 Cooling curve of Jominy specimen

Fig. 5 Specimen

Table 1 Jominy Test Result

Distance, mm 2.5 5 7.5 10 12.5 15 20 25 30 40 50
Hardness HRC 55 54 50 45 40 36 33 32 31 26 24
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hardness to HRC hardness. Maximum residual stresses exist in
section A-A (Fig. 5). The distribution of stresses in section A-A
is shown in Fig. 7.

6. Conclusion

A mathematical model of steel quenching has been devel-
oped to predict the distribution of mechanical properties and
strain and residual stresses in a specimen with complex geom-
etry. The model is based on the finite volume method and
consists of numerical calculation of temperature fields in the
process of cooling, numerical simulation of hardness, micro-
structure, and mechanical properties, and numerical simulation
of stresses and strains.

The finite volume method is a good numerical method for
computer simulation of temperature field, mechanical proper-
ties, and residual stresses and strains of the quenched steel
workpiece.

Mathematical modeling of cooling is based on calibrated
heat transfer values. Hardness in specimen points was esti-
mated on the basis of the time of cooling from 800 °C to
500 °C, i.e., by the conversion of the mentioned specific time
to hardness results. In this way the Jominy test results have
been used in the mathematical model. Microstructure fraction
has been estimated on the basis of chemical composition,
Jominy test results, and time of cooling from 800 °C to 500 °C.

The established model has been applied in the computer
simulation of hardness, residual stresses, and distortions of the
quenched specimen with complex form. Comparison of the
mathematical modeling results with the experiment showed
that the presented model has a good performance of steel
quenching simulation.
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